Performance evaluation of a deep learning model for automatic detection and localization of idiopathic osteosclerosis on dental panoramic radiographs

Author:

Tassoker MelekORCID,Öziç Muhammet ÜsameORCID,Yuce FatmaORCID

Abstract

AbstractIdiopathic osteosclerosis (IO) are focal radiopacities of unknown etiology observed in the jaws. These radiopacities are incidentally detected on dental panoramic radiographs taken for other reasons. In this study, we investigated the performance of a deep learning model in detecting IO using a small dataset of dental panoramic radiographs with varying contrasts and features. Two radiologists collected 175 IO-diagnosed dental panoramic radiographs from the dental school database. The dataset size is limited due to the rarity of IO, with its incidence in the Turkish population reported as 2.7% in studies. To overcome this limitation, data augmentation was performed by horizontally flipping the images, resulting in an augmented dataset of 350 panoramic radiographs. The images were annotated by two radiologists and divided into approximately 70% for training (245 radiographs), 15% for validation (53 radiographs), and 15% for testing (52 radiographs). The study employing the YOLOv5 deep learning model evaluated the results using precision, recall, F1-score, mAP (mean Average Precision), and average inference time score metrics. The training and testing processes were conducted on the Google Colab Pro virtual machine. The test process's performance criteria were obtained with a precision value of 0.981, a recall value of 0.929, an F1-score value of 0.954, and an average inference time of 25.4 ms. Although radiographs diagnosed with IO have a small dataset and exhibit different contrasts and features, it has been observed that the deep learning model provides high detection speed, accuracy, and localization results. The automatic identification of IO lesions using artificial intelligence algorithms, with high success rates, can contribute to the clinical workflow of dentists by preventing unnecessary biopsy procedure.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3