Increased Lung Catalase Activity Confers Protection Against Experimental RSV Infection

Author:

Ansar Maria,Ivanciuc Teodora,Garofalo Roberto P.,Casola Antonella

Abstract

AbstractRespiratory syncytial virus (RSV) infection in mouse and human lung is associated with oxidative injury and pathogenic inflammation. RSV impairs antioxidant responses by increasing the degradation of transcription factor NRF2, which controls the expression of several antioxidant enzyme (AOE) genes, including catalase. Since catalase is a key enzyme for the dismutation of virus-mediated generation of hydrogen peroxide (H2O2) we developed a model of intranasal supplementation of polyethylene glycol-conjugated catalase (PG-CAT) for RSV-infected mice. The results of our study show that PG-CAT supplementation was able to increase specific enzymatic activity along with reduction in H2O2 in the airways and had a significant protective effect against RSV-induced clinical disease and airway pathology. PG-CAT treated mice showed amelioration in airway obstruction, reduction in neutrophil elastase and inflammation. Improved airway hyperresponsiveness was also observed in mice that received PG-CAT as a treatment post-viral inoculation. In addition, PG-CAT greatly reduced the concentration of inflammatory cytokines and chemokines, including IL-1, TNF-α, IL-9, CXCL1, CCL2, and CCL5 in the bronchoalveolar lavage fluid of RSV-infected mice, without increasing viral replication in the lung. In conclusion, catalase supplementation may represent a novel pharmacologic approach to be explored in human for prevention or treatment of respiratory infections caused by RSV.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference51 articles.

1. Shi, T. et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study, 390(10098), 946 (2017).

2. Nair, H. et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis, 375(9725), 1545 (2010).

3. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV Study Group. Pediatrics 102(3 Pt 1), 531 (1998).

4. Casola, A. et al. Oxidant tone regulates RANTES gene transcription in airway epithelial cells infected with Respiratory Syncytial Virus: role in viral-induced Interferon Regulatory Factor activation. J. Biol. Chem. 276, 19715 (2001).

5. Liu, T. et al. Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine phosphatases. J. Biol. Chem. 279(4), 2461 (2004).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3