Modified Meyerhof approach for forecasting reliable ultimate capacity of the large diameter bored piles

Author:

Al-Atroush M. E.,Hefny A. M.,Sorour T. M.

Abstract

AbstractThe static loading test is undoubtedly the most reliable method for forecasting the ultimate capacity of the large diameter bored piles (LDBP). However, in-situ loading of this class of piles until reaching failure is practically seldom due to the large amount of settlement required for shaft and base mobilization. Therefore, many international design standards recommend either capacity-based or settlement-based methods to estimate the LDBP ultimate capacity in case of the impossibility of performing loading tests during the design phase. However, those methods are invariably associated with various degrees of uncertainty resulting from several factors, as evidenced in several comparative analyses available in the literature. For instance, the settlement-based method of the Egyptian code of practice (ECP 202/4) usually underestimates the ultimate capacity of LDBP. In contrast, Meyerhof's capacity-based method often overestimates the LDBP’s ultimate capacity. In this paper, a modified approach has been proposed to forecast the ultimate capacity of the LDBP. This approach was modified from Meyerhof’s classical formula (1976) through three fundamental stages. First, an assessment study was performed to evaluate the reliability of the estimated LDBP ultimate capacity using Meyerhof’s classical method. For this purpose, results of full scale loaded to failure loading LDBP test and related twenty-eight parametric numerical models with various pile geometrical and soil geotechnical parameters have been used. Based on the assessment study findings, the essential modifications were suggested in the second stage to adapt Meyerhof’s classic method. In the third stage, the results of several numerical models and in-situ loading tests were employed to assess the accuracy of the developed modified method. This study showed that Meyerhof's classical method overestimated the ultimate capacity of LDBP with an error percentage ranging from 14 to 46%. On the other side, the proposed modified approach has succeeded in estimating the ultimate capacity of loaded to failure in-situ LDBP test and twenty numerical LDBP models with error percentages ranging from 0.267 to 7.75%.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3