A study on deep learning model based on global–local structure for crowd flow prediction

Author:

Go HeounMo,Park SangHyun

Abstract

AbstractCrowd flow prediction has been studied for a variety of purposes, ranging from the private sector such as location selection of stores according to the characteristics of commercial districts and customer-tailored marketing to the public sector for social infrastructure design such as transportation networks. Its importance is even greater in light of the spread of contagious diseases such as COVID-19. In many cases, crowd flow can be divided into subgroups by common characteristics such as gender, age, location type, etc. If we use such hierarchical structure of the data effectively, we can improve prediction accuracy of crowd flow for subgroups. But the existing prediction models do not consider such hierarchical structure of the data. In this study, we propose a deep learning model based on global–local structure of the crowd flow data, which utilizes the overall(global) and subdivided by the types of sites(local) crowd flow data simultaneously to predict the crowd flow of each subgroup. The experiment result shows that the proposed model improves the prediction accuracy of each sub-divided subgroup by 5.2% (Table 5 Cat #9)—45.95% (Table 11 Cat #5), depending on the data set. This result comes from the comparison with the related works under the same condition that use target category data to predict each subgroup. In addition, when we refine the global data composition by considering the correlation between subgroups and excluding low correlated subgroups, the prediction accuracy is further improved by 5.6–48.65%.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3