Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS

Author:

Aktürk Tuba,de Graaf Tom A.,Güntekin Bahar,Hanoğlu Lütfü,Sack Alexander T.

Abstract

AbstractThe coupling of gamma oscillation (~ 40+ Hz) amplitude to the phase of ongoing theta (~ 6 Hz) oscillations has been proposed to be directly relevant for memory performance. Current theories suggest that memory capacity scales with number of gamma cycles that can be fitted into the preferred phase of a theta cycle. Following this logic, transcranial alternating current stimulation (tACS) may be used to adjust theta cycles (increasing/decreasing theta frequency) to decrease or increase memory performance during stimulation. Here, we used individualized EEG-informed theta tACS to (1) experimentally “slow down” individual theta frequency (ITF), (2) evaluate cognitive after effects on a battery of memory and learning tasks, and (3) link the cognitive performance changes to tACS-induced effects on theta-band oscillations as measured by post EEG. We found frequency- and task-specific tACS after effects demonstrating a specific enhancement in memory capacity. This tACS-induced cognitive enhancement was specific to the visual memory task performed immediately after tACS offset, and specific to the ITF-1 Hz (slowing) stimulation condition and thus following a protocol specifically designed to slow down theta frequency to enhance memory capacity. Follow-up correlation analyses in this group linked the enhanced memory performance to increased left frontal-parietal theta-band connectivity. Interestingly, resting-state theta power immediately after tACS offset revealed a theta power increase not for the ITF-1 Hz group, but only for the ITF group where the tACS frequency was ‘optimal’ for entrainment. These results suggest that while individually calibrated tACS at peak frequency maximally modulates resting-state oscillatory power, tACS stimulation slightly below this optimal peak theta frequency is better suited to enhance memory capacity performance. Importantly, our results further suggest that such cognitive enhancement effects can last beyond the period of stimulation and are linked to increased network connectivity, opening the door towards more clinical and applied relevance of using tACS in cognitive rehabilitation and/or neurocognitive enhancement.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3