Combination predicting model of traffic congestion index in weekdays based on LightGBM-GRU

Author:

Cheng Wei,Li Jiang-lin,Xiao Hai-Cheng,Ji Li-na

Abstract

AbstractTree-based and deep learning methods can automatically generate useful features. Not only can it enhance the original feature representation, but it can also learn to generate new features. This paper develops a strategy based on Light Gradient Boosting Machine (LightGBM or LGB) and Gated Recurrent Unit (GRU) to generate features to improve the expression ability of limited features. Moreover, a SARIMA-GRU prediction model considering the weekly periodicity is introduced. First, LightGBM is used to learn features and enhance the original features representation; secondly, GRU neural network is used to generate features; finally, the result ensemble is used as the input for prediction. Moreover, the SARIMA-GRU model is constructed for predicting. The GRU prediction consequences are revised by the SARIMA model that a better prediction can be obtained. The experiment was carried out with the data collected by Ride-hailing in Chengdu, and four predicted indicators and two performance indexes are utilized to evaluate the model. The results validate that the model proposed has significant improvements in the accuracy and performance of each component.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference39 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3