The epidemic forest reveals the spatial pattern of the spread of acute respiratory infections in Jakarta, Indonesia

Author:

Nasution Yuki Novia,Sitorus Marli Yehezkiel,Sukandar Kamal,Nuraini Nuning,Apri Mochamad,Salama Ngabila

Abstract

AbstractAcute respiratory infection (ARI) is a communicable disease of the respiratory tract that implies impaired breathing. The infection can expand from one to the neighboring areas at a region-scale level through a human mobility network. Specific to this study, we leverage a record of ARI incidences in four periods of outbreaks for 42 regions in Jakarta to study its spatio-temporal spread using the concept of the epidemic forest. This framework generates a forest-like graph representing an explicit spread of disease that takes the onset time, spatio-temporal distance, and case prevalence into account. To support this framework, we use logistic curves to infer the onset time of the outbreak for each region. The result shows that regions with earlier onset dates tend to have a higher burden of cases, leading to the idea that the culprits of the disease spread are those with a high load of cases. To justify this, we generate the epidemic forest for the four periods of ARI outbreaks and identify the implied dominant trees (that with the most children cases). We find that the primary infected city of the dominant tree has a relatively higher burden of cases than other trees. In addition, we can investigate the timely ($$R_t$$ R t ) and spatial reproduction number ($$R_c$$ R c ) by directly evaluating them from the inferred graphs. We find that $$R_t$$ R t for dominant trees are significantly higher than non-dominant trees across all periods, with regions in western Jakarta tend to have higher values of $$R_c$$ R c . Lastly, we provide simulated-implied graphs by suppressing 50% load of cases of the primary infected city in the dominant tree that results in a reduced $$R_c$$ R c , suggesting a potential target of intervention to depress the overall ARI spread.

Funder

PKDN Research Grant 2023

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3