A hybrid numerical/machine learning model development to improve the bimetal performance in the electric circuit breakers

Author:

Mallah Abdul Rahman,Aljuraid Nawaf,Alawi Omer A.,Yaseen Zaher Mundher,Singh Kamaljeet,Ataki Adel

Abstract

AbstractBimetals are widely used as a thermal tripping mechanism inside the miniature circuit breakers (MCBs) products when an overload current passes through the circuit for a certain period. Experimental, numerical, and, recently artificial intelligence methods are widely used in designing electric components. However, developing the bimetal for MCB products somewhat differs from developing other conductor items since they are strongly related to the electrical, mechanical, and thermal performance of the MCB. The conventional experimental and numerical approaches are time-consuming processes that cannot be easily utilized in optimizing the product's performance within the development lead time. In this study, a simple, fast, robust, and accurate novel methodology has been introduced to predict the temperature rise of the bimetal and other related performance characteristics. The numerical model has been built on the time-based finite difference method to frame the theoretical thermal model of the bimetal. Then, the numerical model has been consolidated by the machine learning (ML) model to take advantage of the experiments to provide an accurate, fast and reliable model finally. The novel model agrees well with the experimental tests, where the maximum error does not exceed 8%. The model has been used to redesign the bimetal of a 32 A MCB product and significantly reduce the maximum temperature by 24 °C. The novel model is promising since it considerably reduces the required design time, provides accurate predictions, and helps to optimize the performance of the circuit breaker products.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3