Stability bearing capacity of concrete filled steel tubular columns subjected to long-term load

Author:

Lai Xiuying,Gao Huabin,Yang Zhen,Zheng Juan,Chen Zhaoyu,Lin Fuming

Abstract

AbstractConcrete-filled steel tube (CFST) are commonly used in modern building and bridge applications. Despite their popularity, studies on the investigation of the influence of long-term load on the stability bearing capacity of such elements are scarce. This study investigates how the key parameters including slenderness ratio (λ), axial load ratio (m), and eccentricity ratio (e/r) affect the stability bearing capacity of a CFST column under sustained load. Twenty three CFST columns were fabricated to investigate the effect of long-term load on the stability bearing capacity. Fourteen specimens were subjected to constant compressive loading for 462 days and then tested for failure. The remaining 9 were companion load-free specimens. A three-stage finite element method was used to predict the stability bearing capacity after creep. The results indicate that the stability bearing capacity of CFST columns decrease after being subjected to long-term load. Both the experimental and numerical results indicated that the load of steel tube for long-term load specimens reaching up to the elastic–plastic and plastic process was lower than that of the load-free specimens. Moreover, the corresponding strain of the creep specimens was greater than that of the load-free specimens when the member reached the maximum load. Benchmarking analyses have shown that the creep reduction coefficient (kcr) proposed for CFST columns can be used to predict the reduction of stability bearing capacity after creep. Furthermore, a collected database comprising 49 CFST specimens subjected to long-term load was used to investigate the proposed formulae for kcr. The results show that the formulae were consistent with the experiment results.

Funder

Youth Project of Fujian Provincial Nature Fund

Fujian University Engineering Research Center for disaster prevention and mitigation of Southeast Coastal Engineering Structures, China

Fatigue performance test platform of steel structure bridge in Southeast Coast

General Project of Fujian Provincial Natural fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3