Rab6 is required for rapid, cisternal-specific, intra-Golgi cargo transport

Author:

Dickson Lindsey James,Liu Shijie,Storrie Brian

Abstract

AbstractRab6, the most abundant Golgi associated small GTPase, consists of 2 equally common isoforms, Rab6A and Rab6A′, that differ in 3 amino acids and localize to trans Golgi cisternae. The two isoforms are largely redundant in function and hence are often referred to generically as Rab6. Rab6 loss-of-function inhibits retrograde Golgi trafficking, induces an increase in Golgi cisternal number in HeLa cells and delays the cell surface appearance of the anterograde cargo protein, VSVG. We hypothesized that these effects are linked and might be explained by a cisternal-specific delay in cargo transport. In pulse chase experiments using a deconvolved, confocal line scanning approach to score the distribution of the tsO45 mutant of VSVG protein in Rab6 depleted cells, we found that anterograde transport at 32 °C, permissive conditions, through the Golgi apparatus was locally delayed, almost tenfold, between medial and trans Golgi cisterna. Cis to medial transport was nearly normal as was trans Golgi to TGN transport. TGN exit was unaffected by Rab6 depletion. These effects were the same with either of two siRNAs. Similar intra-Golgi transport delays were seen at 37 °C with RUSH VSVG or a RUSH GPI-anchored construct using a biotin pulse to release the marker proteins from the ER. Using 3D-SIM, a super resolution approach, we found that RUSH VSVG transport was delayed pre-trans Golgi. These visual approaches suggest a selective slowing of anterograde transport relative to 3 different marker proteins downstream of the trans Golgi. Using a biochemical approach, we found that the onset of VSVG endoglycosidase H resistance in Rab6 depleted cells was delayed. Depletion of neither Rab6A or Rab6A′ isoforms alone had any effect on anterograde transport through the Golgi suggesting that Rab6A and Rab6A′ act coordinately. Delayed cargo transport conditions correlate strongly with a proliferation of Golgi cisternae observed in earlier electron microscopy. Our results strongly indicate that Rab6 is selectively required for rapid anterograde transport from the medial to trans Golgi. We suggest that the observed correlation with localized cisternal proliferation fits best with a cisternal progression model of Golgi function.

Funder

NIGMS

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3