Over-expression of transcription factor ARK1 gene leads to down-regulation of lignin synthesis related genes in hybrid poplar ‘717’

Author:

Ye Qinxia,Liu Xiaozhen,Bian Wen,Zhang Zhiming,Zhang HanyaoORCID

Abstract

AbstractImproving wood growth rate and wood quality are worthy goals in forest genetics and breeding research. The ARK1 gene is one member of the ARBORKNOX family in all plants, which play an essential role in the process of plant growth and development, but the mechanism associated with its gene network regulation is poorly investigated. In order to generate over-expression transgenic hybrid poplar, the agrobacterium-mediated transformation was used to obtain transgenic hybrid poplar ‘717’ plants to provide insight into the function of the ARK1 gene in poplar. Moreover, the morphology of transgenic plants was observed, and transcriptome analysis was performed to explore the ARK1 gene function. The results showed that there were significant differences in pitch, stem diameter, petiole length, leaf width, leaf length and seedling height between ARK1 transgenic seedlings and non-transgenic seedlings. The transgenic seedlings usually had multiple branches and slender leaves, with some leaves not being fully developed. The results of transcriptome analysis showed that the differentially expressed genes were involved in the growth of poplars, including proteins, transcription factors and protein kinases. Genes related to the positive regulation in plant hormone signal transduction pathways were up-regulated, and the genes related to lignin synthesis were down-regulated. The RT-qPCR analysis confirmed the expression levels of the genes involved in the plant hormone signal transduction pathways and phenylpropanoid pathway. In conclusion, the ARK1 gene had a positive regulatory effect on plant growth, and the gene’s coding enzymes related to lignin synthesis were down-regulated.

Funder

National Natural Science Foundation of China

the National key R & D Plan for the 13th Five-Year Plan Project of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3