Biallelic inheritance in a single Pakistani family with intellectual disability implicates new candidate gene RDH14

Author:

Pastore Stephen F.,Muhammad Tahir,Harripaul Ricardo,Lau Rebecca,Khan Muhammad Tariq Masood,Khan Muhammad Ismail,Islam Omar,Kang Changsoo,Ayub Muhammad,Jelani Musharraf,Vincent John B.

Abstract

AbstractIn a multi-branch family from Pakistan, individuals presenting with palmoplantar keratoderma segregate in autosomal dominant fashion, and individuals with intellectual disability (ID) segregate in apparent autosomal recessive fashion. Initial attempts to identify the ID locus using homozygosity-by-descent (HBD) mapping were unsuccessful. However, following an assumption of locus heterogeneity, a reiterative HBD approach in concert with whole exome sequencing (WES) was employed. We identified a known disease-linked mutation in the polymicrogyria gene, ADGRG1, in two affected members. In the remaining two (living) affected members, HBD mapping cross-referenced with WES data identified a single biallelic frameshifting variant in the gene encoding retinol dehydrogenase 14 (RDH14). Transcription data indicate that RDH14 is expressed in brain, but not in retina. Magnetic resonance imaging for the individuals with this RDH14 mutation show no signs of polymicrogyria, however cerebellar atrophy was a notable feature. RDH14 in HEK293 cells localized mainly in the nucleoplasm. Co-immunoprecipitation studies confirmed binding to the proton-activated chloride channel 1 (PACC1/TMEM206), which is greatly diminished by the mutation. Our studies suggest RDH14 as a candidate for autosomal recessive ID and cerebellar atrophy, implicating either disrupted retinoic acid signaling, or, through PACC1, disrupted chloride ion homeostasis in the brain as a putative disease mechanism.

Funder

Canadian Institutes of Health Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3