Effective band gap engineering in multi-principal oxides (CeGdLa-Zr/Hf)Ox by temperature-induced oxygen vacancies

Author:

Hu Yixuan,Anandkumar Mariappan,Joardar Joydip,Wang Xiaodong,Deshpande Atul Suresh,Reddy Kolan Madhav

Abstract

AbstractOxygen vacancy control has been one of the most efficient methods to tune the physicochemical properties of conventional oxide materials. A new conceptual multi-principal oxide (MPO) is still lacking a control approach to introduce oxygen vacancies for tuning its inherent properties. Taking multi-principal rare earth-transition metal (CeGdLa-Zr/Hf) oxides as model systems, here we report temperature induced oxygen vacancy generation (OVG) phenomenon in MPOs. It is found that the OVG is strongly dependent on the composition of the MPOs showing different degrees of oxygen loss in (CeGdLaZr)Ox and (CeGdLaHf)Ox under identical high temperature annealing conditions. The results revealed that (CeGdLaZr)Ox remained stable single phase with a marginal decrease in the band gap of about 0.08 eV, whereas (CeGdLaHf)Ox contained two phases with similar crystal structure but different oxygen vacancy concentrations causing semiconductor-to-metal like transition. Due to the intrinsic high entropy, the metallic atoms sublattice in (CeGdLaHf)Ox remains rather stable, regardless of the interstitial oxygen atoms ranging from almost fully occupied (61.84 at%) to almost fully empty (8.73 at%) state in the respective crystal phases. Such highly tunable oxygen vacancies in (CeGdLa-Zr/Hf) oxides show a possible path for band gap engineering in MPOs for the development of efficient photocatalysts.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3