The evolution of neurosensation provides opportunities and constraints for phenotypic plasticity

Author:

Chen Emily Y.,Adams Diane K.

Abstract

AbstractPhenotypic plasticity is widely regarded as important for enabling species resilience to environmental change and for species evolution. However, insight into the complex mechanisms by which phenotypic plasticity evolves in nature is limited by our ability to reconstruct evolutionary histories of plasticity. By using part of the molecular mechanism, we were able to trace the evolution of pre-feeding phenotypic plasticity across the class Echinoidea and identify the origin of plasticity at the base of the regular urchins. The neurosensory foundation for plasticity was ancestral within the echinoids. However, coincident development of the plastic trait and the neurosensory system was not achieved until the regular urchins, likely due to pleiotropic effects and linkages between the two colocalized systems. Plasticity continues to evolve within the urchins with numerous instances of losses associated with loss of sensory abilities and neurons, consistent with a cost of maintaining these capabilities. Thus, evidence was found for the neurosensory system providing opportunities and constraints to the evolution of phenotypic plasticity.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3