Durable superhydrophobic/superoleophilic melamine foam based on biomass-derived porous carbon and multi-walled carbon nanotube for oil/water separation

Author:

Shayesteh Hadi,Khosrowshahi Mobin Safarzadeh,Mashhadimoslem Hossein,Maleki Farid,Rabbani Yahya,Emrooz Hosein Banna Motejadded

Abstract

AbstractIn the present study, fabrications of two eco-friendly superhydrophobic/superoleophilic recyclable foamy-based adsorbents for oil/water mixture separation were developed. Hierarchically biomass (celery)-derived porous carbon (PC) and multi-walled carbon nanotube (MWCNT) were firstly synthesized and loaded on pristine melamine foam (MF) by the simple dip-coating approach by combining silicone adhesive to create superhydrophobic/superoleophilic, recyclable, and reusable three-dimensional porous structure. The prepared samples have a large specific surface area of 240 m2/g (MWCNT), 1126 m2/g (PC), and good micro-mesoporous frameworks. The water contact angle (WCA) values of the as-prepared foams, PC/MF and MWCNT/MF, not only were 159.34° ± 1.9° and 156.42° ± 1.6°, respectively but also had oil contact angle (OCA) of equal to 0° for a wide range of oils and organic solvents. Therefore, PC/MF and MWCNT/MF exhibited superhydrophobicity and superoleophilicity properties, which can be considered effective adsorbents in oil/water mixture separations. In this context, superhydrophobic/superoleophilic prepared foams for kind of different oils and organic solvents were shown to have superior separation performance ranges of 54–143 g/g and 46–137 g/g for PC/MF and MWCNT/MF, respectively, suggesting a new effective porous material for separating oil spills. Also, outstanding recyclability and reusability of these structures in the ten adsorption-squeezing cycles indicated that the WCA and sorption capacity has not appreciably changed after soaking into acidic (pH = 2) and alkaline (pH = 12) as well as saline (3.5% NaCl) solutions. More importantly, the reusability and chemical durability of the superhydrophobic samples made them good opportunities for use in different harsh conditions for oil-spill cleanup.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3