Dynamics of stochastic-constrained particles

Author:

Guo Tao

Abstract

AbstractPrior studies have focused on the overall behavior of randomly moving particle swarms. However, the characteristics of the stochastic-constrained particles that form ubiquitously within these swarms remain oblivious. This study demonstrates a generalized diffusion equation for stochastic-constrained particles that considers the velocity and location aggregation effects observed from their parent particle swarm (i.e., a completely random particle swarm). This equation can be approximated as the form of Schrödinger equation in the microcosmic case (low relative density) and describe the dynamics of the total mass distribution in the macrocosmic case (high relative density). The predicted density distribution of the particle swarm in the stable aggregation state is consistent with the total mass distribution of massive, relaxed galaxy clusters (at least in the range of $$r<r_{\textrm{s}}$$ r < r s ), preventing cuspy problems in the empirical Navarro–Frenk–White profile. This study opens a window to observe the dynamics of stochastic-constrained particles from a third perspective, from which the aggregation effect of particles without gravitation can be saw.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3