Screening for chronic conditions with reproductive factors using a machine learning based approach

Author:

Tian Siyu,Dong Weinan,Chan Ka Lung,Leng Xinyi,Bedford Laura Elizabeth,Liu Jia

Abstract

AbstractA large proportion of cases with chronic conditions including diabetes or pre-diabetes, hypertension and dyslipidemia remain undiagnosed. To include reproductive factors (RF) might be able to improve current screening guidelines by providing extra effectiveness. The objective is to study the relationships between RFs and chronic conditions’ biomarkers. A cross-sectional study was conducted. Demographics, RFs and metabolic biomarkers were collected. The relationship of the metabolic biomarkers were shown by correlation analysis. Principal component analysis (PCA) and autoencoder were compared by cross-validation. The better one was adopted to extract a single marker, the general chronic condition (GCC), to represent the body’s chronic conditions. Multivariate linear regression was performed to explore the relationship between GCC and RFs. In total, 1,656 postmenopausal females were included. A multi-layer autoencoder outperformed PCA in the dimensionality reduction performance. The extracted variable by autoencoder, GCC, was verified to be representative of three chronic conditions (AUC for patoglycemia, hypertension and dyslipidemia were 0.844, 0.824 and 0.805 respectively). Linear regression showed that earlier age at menarche (OR = 0.9976) and shorter reproductive life span (OR = 0.9895) were associated with higher GCC. Autoencoder performed well in the dimensionality reduction of clinical metabolic biomarkers. Due to high accessibility and effectiveness, RFs have potential to be included in screening tools for general chronic conditions and could enhance current screening guidelines.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Commission

National Key R&D Program of the Ministry of Science and Technology of Chin

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3