Author:
Majumdar Anamitra,Allam Nader,Zabel W. Jeffrey,Demidov Valentin,Flueraru Costel,Vitkin I. Alex
Abstract
AbstractThe dominant consequence of irradiating biological systems is cellular damage, yet microvascular damage begins to assume an increasingly important role as the radiation dose levels increase. This is currently becoming more relevant in radiation medicine with its pivot towards higher-dose-per-fraction/fewer fractions treatment paradigm (e.g., stereotactic body radiotherapy (SBRT)). We have thus developed a 3D preclinical imaging platform based on speckle-variance optical coherence tomography (svOCT) for longitudinal monitoring of tumour microvascular radiation responses in vivo. Here we present an artificial intelligence (AI) approach to analyze the resultant microvascular data. In this initial study, we show that AI can successfully classify SBRT-relevant clinical radiation dose levels at multiple timepoints (t = 2–4 weeks) following irradiation (10 Gy and 30 Gy cohorts) based on induced changes in the detected microvascular networks. Practicality of the obtained results, challenges associated with modest number of animals, their successful mitigation via augmented data approaches, and advantages of using 3D deep learning methodologies, are discussed. Extension of this encouraging initial study to longitudinal AI-based time-series analysis for treatment outcome predictions at finer dose level gradations is envisioned.
Funder
Canadian Institutes of Health Research
Natural Sciences and Engineering Research Council of Canada
New Frontiers in Research Fund
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献