Light-based methods for predicting circadian phase in delayed sleep–wake phase disorder

Author:

Murray Jade M.,Magee Michelle,Sletten Tracey L.,Gordon Christopher,Lovato Nicole,Ambani Krutika,Bartlett Delwyn J.,Kennaway David J.,Lack Leon C.,Grunstein Ronald R.,Lockley Steven W.,Rajaratnam Shantha M. W.,Phillips Andrew J. K.

Abstract

AbstractMethods for predicting circadian phase have been developed for healthy individuals. It is unknown whether these methods generalize to clinical populations, such as delayed sleep–wake phase disorder (DSWPD), where circadian timing is associated with functional outcomes. This study evaluated two methods for predicting dim light melatonin onset (DLMO) in 154 DSWPD patients using ~ 7 days of sleep–wake and light data: a dynamic model and a statistical model. The dynamic model has been validated in healthy individuals under both laboratory and field conditions. The statistical model was developed for this dataset and used a multiple linear regression of light exposure during phase delay/advance portions of the phase response curve, as well as sleep timing and demographic variables. Both models performed comparably well in predicting DLMO. The dynamic model predicted DLMO with root mean square error of 68 min, with predictions accurate to within ± 1 h in 58% of participants and ± 2 h in 95%. The statistical model predicted DLMO with root mean square error of 57 min, with predictions accurate to within ± 1 h in 75% of participants and ± 2 h in 96%. We conclude that circadian phase prediction from light data is a viable technique for improving screening, diagnosis, and treatment of DSWPD.

Funder

National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3