Author:
Murray Jade M.,Magee Michelle,Sletten Tracey L.,Gordon Christopher,Lovato Nicole,Ambani Krutika,Bartlett Delwyn J.,Kennaway David J.,Lack Leon C.,Grunstein Ronald R.,Lockley Steven W.,Rajaratnam Shantha M. W.,Phillips Andrew J. K.
Abstract
AbstractMethods for predicting circadian phase have been developed for healthy individuals. It is unknown whether these methods generalize to clinical populations, such as delayed sleep–wake phase disorder (DSWPD), where circadian timing is associated with functional outcomes. This study evaluated two methods for predicting dim light melatonin onset (DLMO) in 154 DSWPD patients using ~ 7 days of sleep–wake and light data: a dynamic model and a statistical model. The dynamic model has been validated in healthy individuals under both laboratory and field conditions. The statistical model was developed for this dataset and used a multiple linear regression of light exposure during phase delay/advance portions of the phase response curve, as well as sleep timing and demographic variables. Both models performed comparably well in predicting DLMO. The dynamic model predicted DLMO with root mean square error of 68 min, with predictions accurate to within ± 1 h in 58% of participants and ± 2 h in 95%. The statistical model predicted DLMO with root mean square error of 57 min, with predictions accurate to within ± 1 h in 75% of participants and ± 2 h in 96%. We conclude that circadian phase prediction from light data is a viable technique for improving screening, diagnosis, and treatment of DSWPD.
Funder
National Health and Medical Research Council
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献