Data based predictive models for odor perception

Author:

Chacko Rinu,Jain Deepak,Patwardhan Manasi,Puri Abhishek,Karande Shirish,Rai Beena

Abstract

AbstractMachine learning and data analytics are being increasingly used for quantitative structure property relation (QSPR) applications in the chemical domain where the traditional Edisonian approach towards knowledge-discovery have not been fruitful. The perception of odorant stimuli is one such application as olfaction is the least understood among all the other senses. In this study, we employ machine learning based algorithms and data analytics to address the efficacy of using a data-driven approach to predict the perceptual attributes of an odorant namely the odorant characters (OC) of “sweet” and “musky”. We first analyze a psychophysical dataset containing perceptual ratings of 55 subjects to reveal patterns in the ratings given by subjects. We then use the data to train several machine learning algorithms such as random forest, gradient boosting and support vector machine for prediction of the odor characters and report the structural features correlating well with the odor characters based on the optimal model. Furthermore, we analyze the impact of the data quality on the performance of the models by comparing the semantic descriptors generally associated with a given odorant to its perception by majority of the subjects. The study presents a methodology for developing models for odor perception and provides insights on the perception of odorants by untrained human subjects and the effect of the inherent bias in the perception data on the model performance. The models and methodology developed here could be used for predicting odor characters of new odorants.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference51 articles.

1. Reinarz, J. Past Scents: Historical Perspectives on Smell (University of Illinois Press, Illinois, 2014).

2. Turin, L. & Sanchez, T. Perfumes: The AZ Guide (Profile Books, Cambridge, 2008).

3. Toedt, J., Koza, D. & Van Cleef-Toedt, K. Chemical Composition of Everyday Products (Greenwood Press, Westport, 2005).

4. Sell, C. S. (ed.) The Chemistry of Fragrances: from Perfumer to Consumer (Royal Society of Chemistry, New York, 2006).

5. Desor, J. & Beauchamp, G. K. The human capacity to transmit olfactory information. Percept. Psychophys. 16, 551–556 (1974).

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3