Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses

Author:

Ghorbani Alireza,Askari Amirhossein,Malekan Mehdi,Nili-Ahmadabadi Mahmoud

Abstract

AbstractGlass-forming ability (GFA) of bulk metallic glasses (BMGs) is a determinant parameter which has been significantly studied. GFA improvements could be achieved through trial-and-error experiments, as a tedious work, or by using developed predicting tools. Machine-Learning (ML) has been used as a promising method to predict the properties of BMGs by removing the barriers in the way of its alloy design. This article aims to develop a ML-based method for predicting the maximum critical diameter (Dmax) of BMGs as a factor of their glass-forming ability. The main result is that the random forest method can be used as a sustainable model (R2 = 92%) for predicting glass-forming ability. Also, adding characteristic temperatures to the model will increase the accuracy and efficiency of the developed model. Comparing the measured and predicted values of Dmax for a set of newly developed BMGs indicated that the model is reliable and can be truly used for predicting the GFA of BMGs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3