Use of machine learning to improve the estimation of conductivity and permittivity based on longitudinal relaxation time T1 in magnetic resonance at 7 T

Author:

Hernandez Daniel,Kim Kyoung-Nam

Abstract

AbstractElectrical property tomography (EPT) is a noninvasive method that uses magnetic resonance imaging (MRI) to estimate the conductivity and permittivity of tissues, and hence, can be used as a biomarker. One branch of EPT is based on the correlation of water and relaxation time T1 with the conductivity and permittivity of tissues. This correlation was applied to a curve-fitting function to estimate electrical properties, it was found to have a high correlation between permittivity and T1 however the computation of conductivity based on T1 requires to estimate the water content. In this study, we developed multiple phantoms with several ingredients that modify the conductivity and permittivity and explored the use of machine learning algorithms to have a direct estimation of conductivity and permittivity based on MR images and the relaxation time T1. To train the algorithms, each phantom was measured using a dielectric measurement device to acquire the true conductivity and permittivity. MR images were taken for each phantom, and the T1 values were measured. Then, the acquired data were tested using curve fitting, regression learning, and neural fit models to estimate the conductivity and permittivity values based on the T1 values. In particular, the regression learning algorithm based on Gaussian process regression showed high accuracy with a coefficient of determination R2 of 0.96 and 0.99 for permittivity and conductivity, respectively. The estimation of permittivity using regression learning demonstrated a lower mean error of 0.66% compared to the curve fitting method, which resulted in a mean error of 3.6%. The estimation of conductivity also showed that the regression learning approach had a lower mean error of 0.49%, whereas the curve fitting method resulted in a mean error of 6%. The findings suggest that utilizing regression learning models, specifically Gaussian process regression, can result in more accurate estimations for both permittivity and conductivity compared to other methods.

Funder

Institute for Information and Communications Technology Promotion

Korea Brain Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3