Author:
Okamura Kensuke,Inagaki Yusuke,Matsui Takeshi K.,Matsubayashi Masaya,Komeda Tomoya,Ogawa Munehiro,Mori Eiichiro,Tanaka Yasuhito
Abstract
AbstractReverse transcription quantitative PCR (RT-qPCR) is used to quantify gene expression and require standardization with reference genes. We sought to identify the reference genes best suited for experiments that induce osteogenic differentiation from human induced pluripotent stem cells. They were cultured in an undifferentiated maintenance medium and after confluence, further cultured in an osteogenic differentiation medium for 28 days. RT-qPCR was performed on undifferentiation markers, osteoblast and osteocyte differentiation markers, and reference gene candidates. The expression stability of each reference gene candidate was ranked using four algorithms. General rankings identified TATA box binding protein in the first place, followed by transferrin receptor, ribosomal protein large P0, and finally, beta-2-microglobulin, which was revealed as the least stable. Interestingly, universally used GAPDH and ACTB were found to be unsuitable. Our findings strongly suggest a need to evaluate the expression stability of reference gene candidates for each experiment.
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Higuchi, R., Fockler, C., Dollinger, G. & Watson, R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (NY) 11, 1026–1030 (1993).
2. Bustin, S. A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29, 23–39 (2002).
3. Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).
4. Akahane, M. et al. Osteogenic matrix sheet-cell transplantation using osteoblastic cell sheet resulted in bone formation without scaffold at an ectopic site. J. Tissue Eng. Regen. Med. 2, 196–201 (2008).
5. Tohma, Y. et al. Bone marrow-derived mesenchymal cells can rescue osteogenic capacity of devitalized autologous bone. J. Tissue Eng. Regen. Med. 2, 61–68 (2008).
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献