The JcWRKY tobacco transgenics showed improved photosynthetic efficiency and wax accumulation during salinity

Author:

More Prashant,Agarwal ParinitaORCID,Joshi Priyanka S.,Agarwal Pradeep K.

Abstract

AbstractSalinity is one of the major factors negatively affecting crop productivity. WRKY transcription factors (TFs) are involved in salicylic acid (SA) mediated cellular reactive oxygen species homeostasis in response to different stresses, including salinity. Therefore, the effect of NaCl, NaCl + SA and SA treatments on different photosynthesis-related parameters and wax metabolites were studied in the Jatropha curcas WRKY (JcWRKY) overexpressing tobacco lines. JcWRKY transgenics showed improved photosynthesis rate, stomatal conductance, intercellular CO2 concentration/ambient CO2 concentration ratio (Ci/Ca ratio), electron transport rate (ETR), photosynthesis efficiency (Fv/Fm), photochemical quenching (qP), non-photochemical quenching (NPQ) and quantum yield of PSII electron transport (ΦPSII) in response to salinity stress, while exogenous SA application had subtle effect on these parameters. Alkane, the major constituent of wax showed maximum accumulation in transgenics exposed to NaCl. Other wax components like fatty alcohol, carboxylic acid and fatty acid were also higher in transgenics with NaCl + SA and SA treatments. Interestingly, the transgenics showed a higher number of open stomata in treated plants as compared to wild type (WT), indicating less perception of stress by the transgenics. Improved salinity tolerance in JcWRKY overexpressing tobacco transgenics is associated with photosynthetic efficiency and wax accumulation, mediated by efficient SA signalling. The transgenics showed differential regulation of genes related to photosynthesis (NtCab40, NtLhcb5 and NtRca1), wax accumulation (NtWIN1) and stomatal regulation (NtMUTE, NtMYB-like, NtNCED3-2 and NtPIF3). The present study indicates that JcWRKY is a potential TF facilitating improved photosynthesis with the wax metabolic co-ordination in transgenics during stress.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3