Impact of different scanners and acquisition parameters on robustness of MR radiomics features based on women’s cervix

Author:

Mi Honglan,Yuan Mingyuan,Suo Shiteng,Cheng Jiejun,Li Suqin,Duan Shaofeng,Lu Qing

Abstract

AbstractMR Radiomics based on cervical lesions from one single scanner has achieved promising results. However, it is a challenge to achieve clinical translation. Considering multi-scanners and non-uniform scanning parameters from different centers in a real-world medical scenario, we should first identify the influence of such conditions on the robustness of MR radiomics features (RFs) based on the female cervix. In this study, 9 healthy female volunteers were enrolled and 3 kiwis were selected as references. Each of them underwent T2 weighted imaging in three different 3.0-T MR scanners with uniform acquisition parameters, and in one MR scanner with various scanning parameters. A total of 396 RFs were extracted from their images with and without decile intensity normalization. The RFs’ reproducibility was evaluated by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). Representative features were selected using the hierarchical cluster analysis and their discrimination abilities were estimated by ROC analysis through retrospective comparison with the junctional zone and the outer muscular layer of healthy cervix in patients (n = 58) with leiomyoma. This study showed that only a few RFs were robust across different MR scanners and acquisition parameters based on females’ cervix, which might be improved by decile intensity normalization method.

Funder

Shanghai Pujiang Program

The Teaching Program of Shanghai Jiao Tong University School of Medicine

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radiomic study of antenatal prediction of severe placenta accreta spectrum from MRI;British Journal of Radiology;2024-08-17

2. Towards equitable AI in oncology;Nature Reviews Clinical Oncology;2024-06-07

3. Siamese network to assess scanner-related contrast variability in MRI;Image and Vision Computing;2024-05

4. Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer;European Radiology;2023-07-14

5. Siamese Network to Investigate Scanner-Dependency in MRI;2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3