KA-Search, a method for rapid and exhaustive sequence identity search of known antibodies

Author:

Olsen Tobias H.,Abanades Brennan,Moal Iain H.,Deane Charlotte M.ORCID

Abstract

AbstractAntibodies with similar amino acid sequences, especially across their complementarity-determining regions, often share properties. Finding that an antibody of interest has a similar sequence to naturally expressed antibodies in healthy or diseased repertoires is a powerful approach for the prediction of antibody properties, such as immunogenicity or antigen specificity. However, as the number of available antibody sequences is now in the billions and continuing to grow, repertoire mining for similar sequences has become increasingly computationally expensive. Existing approaches are limited by either being low-throughput, non-exhaustive, not antibody specific, or only searching against entire chain sequences. Therefore, there is a need for a specialized tool, optimized for a rapid and exhaustive search of any antibody region against all known antibodies, to better utilize the full breadth of available repertoire sequences. We introduce Known Antibody Search (KA-Search), a tool that allows for the rapid search of billions of antibody variable domains by amino acid sequence identity across either the variable domain, the complementarity-determining regions, or a user defined antibody region. We show KA-Search in operation on the $$\sim $$ 2.4 billion antibody sequences available in the OAS database. KA-Search can be used to find the most similar sequences from OAS within 30 minutes and a representative subset of 10 million sequences in less than 9 seconds. We give examples of how KA-Search can be used to obtain new insights about an antibody of interest. KA-Search is freely available at https://github.com/oxpig/kasearch.

Funder

RCUK | Engineering and Physical Sciences Research Council

GlaxoSmithKline

Roche

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3