Fluorescence excitation-scanning hyperspectral imaging with scalable 2D–3D deep learning framework for colorectal cancer detection

Author:

Oswald Willaim,Browning Craig,Yasmin Ruthba,Deal Joshua,Rich Thomas C.,Leavesley Silas J.,Gong Na

Abstract

AbstractColorectal cancer is one of the top contributors to cancer-related deaths in the United States, with over 100,000 estimated cases in 2020 and over 50,000 deaths. The most common screening technique is minimally invasive colonoscopy using either reflected white light endoscopy or narrow-band imaging. However, current imaging modalities have only moderate sensitivity and specificity for lesion detection. We have developed a novel fluorescence excitation-scanning hyperspectral imaging (HSI) approach to sample image and spectroscopic data simultaneously on microscope and endoscope platforms for enhanced diagnostic potential. Unfortunately, fluorescence excitation-scanning HSI datasets pose major challenges for data processing, interpretability, and classification due to their high dimensionality. Here, we present an end-to-end scalable Artificial Intelligence (AI) framework built for classification of excitation-scanning HSI microscopy data that provides accurate image classification and interpretability of the AI decision-making process. The developed AI framework is able to perform real-time HSI classification with different speed/classification performance trade-offs by tailoring the dimensionality of the dataset, supporting different dimensions of deep learning models, and varying the architecture of deep learning models. We have also incorporated tools to visualize the exact location of the lesion detected by the AI decision-making process and to provide heatmap-based pixel-by-pixel interpretability. In addition, our deep learning framework provides wavelength-dependent impact as a heatmap, which allows visualization of the contributions of HSI wavelength bands during the AI decision-making process. This framework is well-suited for HSI microscope and endoscope platforms, where real-time analysis and visualization of classification results are required by clinicians.

Funder

NSF

Alabama EPSCoR Graduate Research Fellowship

NIH

Alabama Space Grant Consortium

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3