Experimental investigation of radiation shielding competence of B2O3-Na2O-Al2O3-BaO-CaO glass system

Author:

Abdel-Gawad Esraa H.,Sayyed M. I.,Hanafy Taha. A.,Elsafi Mohamed

Abstract

AbstractAiming to extend the scope of utilizing glass in radiation shielding, this work investigates the radiation interaction response of a borate-based glass system. Four borate-glass samples of different substituting concentrations of calcium oxide ($$70-x$$ 70 - x )B2O3:$$10$$ 10 Na2O $$:5$$ : 5 Al2O3$$:15$$ : 15 BaO:$$x$$ x CaO were prepared. To assess the shielding performance of the prepared glass samples, a high-purity germanium detector and different radioactive sources (different energies) were used. Via the narrow beam method, the linear attenuation coefficients (LACs) were experimentally measured. So, the transmission factor (TF), the half-value layer (HVL), the tenth value layer (TVL), the mean free path (MFP), and the radiation protection efficiency (RPE) were calculated for all prepared samples. It was observed that the increase of the concentration of calcium oxide in the proposed borate-based glass samples leads to improve their performance in shielding against radiation. At low energy, the RPE of the samples is almost 100%. However, it was observed that as energy of the radiation source increases, the shielding performance of the samples will decrease. High energy dependence was found when calculating TF, HVL, TVL, and MFP. They were increased with the increase of the energy of the incident photons. At 0.662 MeV, the TF values are equal to 79.26, 79.00, 79.72, and 78.43% for BNABC-1, BNABC-2, BNABC-3, and BNABC-4 in the same oder, respectively. The application of the proposed composition of borate-based glass as a transparent shield against low-energy ionizing radiation was highlighted.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3