Abstract
AbstractThe hepatitis B X protein (HBx) plays a role in the epigenetic regulation of hepatitis B virus (HBV) replication. This study investigated the effects of HBx mutations on HBV transcription and the recruitment of HBx, histone acetyl-transferase P300 and histone deacetylase 1 (HDAC1) to circularized HBV DNA (which resembles covalently closed circular DNA [cccDNA]). Compared with wild type, majority of mutants had lower levels of intracellular HBV RNA (44–77% reduction) and secretory HBsAg (25–81% reduction), and 12 mutants had a reduction in intracellular encapsidated HBV DNA (33–64% reduction). Eight mutants with >70% reduction in HBV RNA and/or HBsAg were selected for chromatin immunoprecipitation analysis. Four HBx mutants with mutations in amino acid residues 55–60 and 121–126 had a lower degree of HBx-cccDNA association than wild type HBx (mean % input: 0.02–0.64% vs. 3.08% in wild type). A reduced association between cccDNA and P300 (mean % input: 0.69–1.81% vs. 3.48% in wild type) and an augmented association with HDAC1 (mean % input: 4.01–14.0% vs. 1.53% in wild type) were detected. HBx amino acid residues 55–60 and 121–126 may play an important role in HBV transcription regulation, via their impeded interaction with cccDNA and altered recruitment of histone modifying enzymes to cccDNA.
Publisher
Springer Science and Business Media LLC
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献