Experimental investigation of laminar and turbulent displacement of residual oil film

Author:

Zhang Yao,Barrouillet Benjamin,Skadsem Hans Joakim

Abstract

AbstractResidual oil films on pipe walls are a common occurrence in industrial processes, and their presence can significantly impact system efficiency and performance. However, the mechanisms that govern oil film removal by an immiscible displacing fluid from the internal walls of pipes under different flow regimes, including laminar and turbulent flows, are not yet fully understood. In this study, we investigated the impact of displacing fluid flow regime, injected volume, displacement time, and wall shear stress on the efficiency of residual oil film removal in a pipe. We first verified the applicability of our developed oil film measurement method for the use in vertical pipes, and found that gravity did not significantly affect the long-term oil film removal process. We verified that our results from the laminar cases agree with the theoretical thin-film limit scaling under reasonable assumptions of constant shear stress and negligible surface tension. We then examined the displacement efficiency of residual oil film under laminar and turbulent flow regimes. Our experimental results revealed that the onset of turbulence of displacing fluid played an important role in the efficient removal of residual oil film, with an optimal range of Reynolds numbers (7000–8000) when the injected volume of displacing fluid is limited. Furthermore, we explored the combined effect of wall shear stress and displacement time on the displacement process under different turbulent flow regimes. We found that the intermediate turbulent regime was the most efficient for achieving cleaning in a limited time, while the highly turbulent regime proved to be the most effective for achieving complete cleaning over a longer time period. These findings have important implications for oil recovery and pipeline maintenance and provide valuable insights into optimizing the removal of residual oil film in pipes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3