Study on the factors of hydrogen sulfide production from lignite bacterial sulfate reduction based on response surface method

Author:

Deng Qigen,Li Shuai,Yao Mengmeng,Liu Chaosi,Zhang Zhecheng,Xiang Sisi

Abstract

AbstractBacterial sulfate reduction (BSR) is one of the key factors leading to the anomalous accumulation of hydrogen sulphide in coal mines. Environmental factors such as temperature and pH play a crucial role in the metabolism and degradation of coal by sulfate-reducing bacteria (SRB). In this study, coal samples were selected from Shengli Coal Mine, and SRB strains were isolated and purified from mine water using a dilution spread-plate anaerobic cultivation method. Based on single-factor experiments and response surface methodology (RSM), the impact of temperature, pH, oxidation–reduction potential (ORP), chemical oxygen demand to sulfate ratio (COD/SO42−) on the generation of hydrogen sulphide during brown coal BSR was analyzed. The results showed that the anaerobic degradation of coal by SRB was inhibited by either too high or too low a temperature to produce hydrogen sulfide, and the greatest production of hydrogen sulfide occurred at a temperature of about 30 °C; The greatest production of hydrogen sulfide occurred at an initial ambient pH of 7.5; COD/SO42− ratio of around 2.0 is most conducive to hydrogen sulphide generation; the lower ORP value is more favorable for hydrogen sulfide generation. The optimal conditions obtained by RSM were: temperature of 30.37 °C, pH of 7.64 and COD/SO42− of 1.96. Under these conditions, the hydrogen sulfide concentration was 56.79 mg/L, the pH value was 8.40, the ORP value was −274 mV, and the SO42− utilization rate was 58.04%. The RSM results showed that temperature, ambient pH and COD/SO42− had a significant effect on hydrogen sulfide production, and the degree of effect was: ambient pH > temperature > COD/SO42−.

Funder

The National Natural Science Foundation of China

The Training Program for Young Backbone Teachers in Higher Education Institutions of Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3