Deep learning-based prediction of in-hospital mortality for sepsis

Author:

Yong Li,Zhenzhou Liu

Abstract

AbstractAs a serious blood infection disease, sepsis is characterized by a high mortality risk and many complications. Accurate assessment of mortality risk of patients with sepsis can help physicians in Intensive Care Unit make optimal clinical decisions, which in turn can effectively save patients’ lives. However, most of the current clinical models used for assessing mortality risk in sepsis patients are based on conventional indicators. Unfortunately, some of the conventional indicators have been shown to be inapplicable in the accurate clinical diagnosis nowadays. Meanwhile, traditional evaluation models only focus on a small amount of personal data, causing misdiagnosis of sepsis patients. We refine the core indicators for mortality risk assessment of sepsis from massive clinical electronic medical records with machine learning, and propose a new mortality risk assessment model, DGFSD, for sepsis patients based on deep learning. The DGFSD model can not only learn individual clinical information about unassessed patients, but also obtain information about the structure of the similarity graph between diagnosed patients and patients to be assessed. Numerous experiments have shown that the accuracy of the DGFSD model is superior to baseline methods, and can significantly improve the efficiency of clinical auxiliary diagnosis.

Funder

National Natural Science Foundation of China

Gansu Provincial Science and Technology Plan Project

Northwest Normal University Major Research Project Incubation Program, China

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning for predicting mortality in adult critically ill patients with Sepsis: A systematic review;Journal of Critical Care;2024-12

2. Machine learning-based prognostic model for 30-day mortality prediction in Sepsis-3;BMC Medical Informatics and Decision Making;2024-09-09

3. MASICU: A Multimodal Attention-based classifier for Sepsis mortality prediction in the ICU;2024 IEEE 37th International Symposium on Computer-Based Medical Systems (CBMS);2024-06-26

4. Advanced Mortality Prediction in Adult ICU: Introducing a Deep Learning Approach in Healthcare;IFIP Advances in Information and Communication Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3