The permeability of shale exposed to supercritical carbon dioxide

Author:

Wu Di,Zhai Wenbo,Liu Xueying,Xiao Xiaochun,Xu Jun,Jia Nan,Miao Feng

Abstract

AbstractPermeability is a critical parameter of tight reservoir rocks and one of the important parameters for characterizing fluid flow and production from reservoirs. It determines the feasibility of its commercial development. SC-CO2 has been used in shale gas exploitation for efficient fracturing and the added benefit of CO2 geo-storage. And SC-CO2 plays an important role in permeability evolution of shale gas reservoirs. In this paper, Firstly, the permeability characteristics of shale under CO2 injection are discussed. The experimental results show that the relationship between permeability and gas pressure is not a single exponential relationship, but there is an obvious segmentation phenomenon, which is particularly obvious when it is close to the supercritical state, and the overall trend is first decreased and then increased. Subsequently, other specimens were selected for SC-CO2 immersion, and nitrogen was used to calibrate and compare shale permeability before and after treatment to assess changes in shale permeability after SC-CO2 treatment at pressures from 7.5 to 11.5 MPa and X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) were used to analyze the raw and CO2-treated shale particle sample, respectively. Results indicate the permeability increases significantly after SC-CO2 treated, and permeability growth is a linear function of SC-CO2 pressure. According to (XRD) analysis and (SEM) analysis, SC-CO2 not only can act as a solvent and dissolve carbonate minerals and clay minerals, but also can complex chemical reactions with mineral components in shale, Further dissolution of carbonate minerals and clay minerals, widened gas seepage channels and enhancing the permeability.

Funder

National Natural Science Foundation of China

Discipline Innovation Team of Liaoning Technical University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3