Author:
Mennel Lukas,Molina-Mendoza Aday J.,Paur Matthias,Polyushkin Dmitry K.,Kwak Dohyun,Giparakis Miriam,Beiser Maximilian,Andrews Aaron Maxwell,Mueller Thomas
Abstract
AbstractPixel binning is a technique, widely used in optical image acquisition and spectroscopy, in which adjacent detector elements of an image sensor are combined into larger pixels. This reduces the amount of data to be processed as well as the impact of noise, but comes at the cost of a loss of information. Here, we push the concept of binning to its limit by combining a large fraction of the sensor elements into a single “superpixel” that extends over the whole face of the chip. For a given pattern recognition task, its optimal shape is determined from training data using a machine learning algorithm. We demonstrate the classification of optically projected images from the MNIST dataset on a nanosecond timescale, with enhanced dynamic range and without loss of classification accuracy. Our concept is not limited to imaging alone but can also be applied in optical spectroscopy or other sensing applications.
Funder
Austrian Science Fund
European Office of Aerospace Research and Development
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献