A comprehensive model for predicting the development of defense system of Capparis spinosa L.: a novel approach to assess the physiological indices

Author:

Afzali Sayed Fakhreddin,Sadeghi Hossein,Taban Azin

Abstract

AbstractCapparisspinosa L. (caper) is a halophytic plant that grows in semi-arid or arid environments. The current study used an integrated experimental and computational approach to investigate the network of inter-correlated effective variables on the activity of antioxidant enzymes, proline, and photosynthetic pigments in stressed caper. To investigate the possible relationships among intercorrelated variables and understand the possible mechanisms, predictive regression modelling, principal component analysis (PCA), Pearson's correlation, and path analysis were implemented. PCA successfully discerned different salt ratio- and drought-specific effects in data in the current study, and treatments with higher growth indices are easily recognizable. Different salt ratios did not have a significant effect on the activity of four antioxidant enzymes, proline and photosynthesis pigments content of caper. While at the mean level, the activity of four antioxidant enzymes of SOD, POD, CAT, and APX significantly increased under drought stress by 54.0%, 71.2%, 79.4%, and 117.6%, respectively, compared to 100% FC. The drought stress also significantly increased the content of carotemoid (29.3%) and proline (by 117.7%). Predictive equation models with highly significant R2 were developed for the estimation of antioxidant enzyme activity and proline content (> 0.94) as well as pigments (> 0.58) were developed. Path analysis studies revealed that proline is the most important regressor in four antioxidant enzyme activities, while leaf tissue density was the most effective variable in the case of chlorophylls. Furthermore, the network of intercorrelated variables demonstrated a close relationship between caper's antioxidant defence system, pigments, and morphological parameters under stress conditions. The findings of this study will be a useful guide to caper producers as well as plant ecophysiological researchers.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference55 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3