Performance evaluation of different regression models: application in a breast cancer patient data

Author:

Abo El Nasr Mona Mahmoud,Abdelmegaly Alaa A.,Abdo Doaa A.

Abstract

AbstractThis paper provides a comprehensive analysis of linear regression models, focusing on addressing multicollinearity challenges in breast cancer patient data. Linear regression methodologies, including GAM, Beta, GAM Beta, Ridge, and Beta Ridge, are compared using two statistical criteria. The study, conducted with R software, showcases the Beta regression model’s exceptional performance, achieving a BIC of − 5520.416. Furthermore, the Ridge regression model demonstrates remarkable results with the best AIC at − 8002.647. The findings underscore the practical application of these models in real-world scenarios and emphasize the Beta regression model’s superior ability to handle multicollinearity challenges. The preference for AIC over BIC in Generalized Additive Models (GAMs) is rooted in the AIC’s calculation framework, highlighting its effectiveness in capturing the complexity and flexibility inherent in GAMs.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. Akram, M. N., Amin, M., Elhassanein, A. & Ullah, M. A. A new modified ridge-type estimator for the beta regression model: Simulation and application. AIMS Math. 7, 10351057 (2022).

2. Anderson, C. J., Verkuilen, J. & Johnson, T. Applied generalized linear mixed models: Continuous and discrete data. Soc. Behav. Sci. 63, 89 (2010).

3. Geissinger, E. A., Khoo, C. L., Richmond, I. C., Faulkner, S. J. & Schneider, D. C. A case for beta regression in the natural sciences. Ecosphere 13, e3940 (2022).

4. Ferrari, S. & Cribari-Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 31, 799–815 (2004).

5. Qasim, M., Maansson, K. & Golam Kibria, B. On some beta ridge regression estimators: Method, simulation and application. J. Stat. Comput. Simul. 91, 1699–1712 (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3