Coronary artery segmentation under class imbalance using a U-Net based architecture on computed tomography angiography images

Author:

Pan Li-Syuan,Li Chia-Wei,Su Shun-Feng,Tay Shee-Yen,Tran Quoc-Viet,Chan Wing P.

Abstract

AbstractCoronary artery disease is caused primarily by vessel narrowing. Extraction of the coronary artery area from images is the preferred procedure for diagnosing coronary diseases. In this study, a U-Net-based network architecture, 3D Dense-U-Net, was adopted to perform fully automatic segmentation of the coronary artery. The network was applied to 474 coronary computed tomography (CT) angiography scans performed at Wanfang Hospital, Taiwan. Of these, 10% were used for testing. The CT scans were divided into patches of 16 original high-resolution slices. The slices were overlapped between patches to take advantage of surrounding imaging information. However, an imbalance between the foreground and background presents a challenge in smaller-object segmentation such as with coronary arteries. The network was optimized and achieved a promising result when the focal loss concept was adopted. To evaluate the accuracy of the automatic segmentation approach, the dice similarity coefficient (DSC) was calculated, and an existing clinical tool was used. The subjective ratings of three experienced radiologists were used to compare the two ratings. The results show that the proposed approach can achieve a DSC of 0.9691, which is significantly higher than other studies using a deep learning approach. In the main trunk, the results of automatic segmentation agree with those of the clinical tool; they were significantly better in some small branches. In our study, automatic segmentation tool shows high-performance detection in coronary lumen vessels, thereby providing potential power in assisting clinical diagnosis.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3