Time delays shape the eco-evolutionary dynamics of cooperation

Author:

Roy Sourav,Nag Chowdhury Sayantan,Kundu Srilena,Sar Gourab Kumar,Banerjee Jeet,Rakshit Biswambhar,Mali Prakash Chandra,Perc Matjaž,Ghosh Dibakar

Abstract

AbstractWe study the intricate interplay between ecological and evolutionary processes through the lens of the prisoner’s dilemma game. But while previous studies on cooperation amongst selfish individuals often assume instantaneous interactions, we take into consideration delays to investigate how these might affect the causes underlying prosocial behavior. Through analytical calculations and numerical simulations, we demonstrate that delays can lead to oscillations, and by incorporating also the ecological variable of altruistic free space and the evolutionary strategy of punishment, we explore how these factors impact population and community dynamics. Depending on the parameter values and the initial fraction of each strategy, the studied eco-evolutionary model can mimic a cyclic dominance system and even exhibit chaotic behavior, thereby highlighting the importance of complex dynamics for the effective management and conservation of ecological communities. Our research thus contributes to the broader understanding of group decision-making and the emergence of moral behavior in multidimensional social systems.

Funder

Slovenian Research Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary dynamics of cooperation coupled with ecological feedback compensation;BioSystems;2024-10

2. Delayed interactions in the noisy voter model through the periodic polling mechanism;Physica A: Statistical Mechanics and its Applications;2024-10

3. A discrete-time model of phenotypic evolution;Applied Mathematics and Computation;2024-09

4. Coupling injunctive social norms with evolutionary games;Applied Mathematics and Computation;2024-04

5. The eco-evolutionary dynamics of strategic species;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3