In silico and in vitro analysis of microRNAs with therapeutic potential in atherosclerosis

Author:

Mahjoubin-Tehran Maryam,Aghaee-Bakhtiari Seyed Hamid,Sahebkar Amirhossein,Butler Alexandra E.,Oskuee Reza Kazemi,Jalili Amin

Abstract

AbstractAtherosclerosis is a chronic inflammatory disease in which aberrant lipid metabolism plays a key role. MicroRNAs (miRNAs), micro-coordinators of gene expression, have been recently proposed as novel clinical biomarkers and potential therapeutic tools for a broad spectrum of diseases. This study aimed to identify miRNAs with therapeutic potential in atherosclerosis. Bioinformatic databases, including experimentally validated and computational prediction tools as well as a novel combination method, were used to identify miRNAs that are able to simultaneously inhibit key genes related to the pathogenesis of atherosclerosis. Further validation of genes and miRNAs was conducted using the STRING online tool, KEGG pathway analysis and DIANA-miRPath. The inhibitory effects of the identified miRNAs in HepG2 and Huh7 cells were verified by real-time PCR. The MTT assay was utilized to evaluate cell cytotoxicity effects of miRNAs. Atherosclerotic drug-targeted genes were selected as key genes. Strong interactions between genes were confirmed using STRING. These genes were shown to be integral to critical pathological processes involved in atherosclerosis. A novel combined method of validated and predicted tools for the identification of effective miRNAs was defined as the combination score (C-Score). Bioinformatic analysis showed that hsa-miR-124-3p and hsa-miR-16-5p possessed the best C-Score (0.68 and 0.62, respectively). KEGG and DIANA-miRPath analysis showed that selected genes and identified miRNAs were involved in atherosclerosis-related pathways. Compared with the controls in both HepG2 and Huh7 cell lines, miR-124 significantly reduced the expression of CETP, PCSK9, MTTP, and APOB, and miR-16 significantly reduced the expression of APOCIII, CETP, HMGCR, PCSK9, MTTP, and APOB, respectively. The cytotoxicity assay showed that miR-124 reduced cell viability, especially after 72 h; however, miR-16 did not show any significant cytotoxicity in either cell line. Our findings indicate that hsa-miR-124 and miR-16 have potential for use as therapeutic candidates in the treatment of atherosclerosis.

Funder

Mashhad University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3