Multiwaves, breathers, lump and other solutions for the Heimburg model in biomembranes and nerves

Author:

Ozsahin Dilber Uzun,Ceesay Baboucarr,baber Muhammad Zafarullah,Ahmed Nauman,Raza Ali,Rafiq Muhammad,Ahmad Hijaz,Awwad Fuad A.,Ismail Emad A. A.

Abstract

AbstractIn this manuscript, a mathematical model known as the Heimburg model is investigated analytically to get the soliton solutions. Both biomembranes and nerves can be studied using this model. The cell membrane’s lipid bilayer is regarded by the model as a substance that experiences phase transitions. It implies that the membrane responds to electrical disruptions in a nonlinear way. The importance of ionic conductance in nerve impulse propagation is shown by Heimburg’s model. The dynamics of the electromechanical pulse in a nerve are analytically investigated using the Hirota Bilinear method. The various types of solitons are investigates, such as homoclinic breather waves, interaction via double exponents, lump waves, multi-wave, mixed type solutions, and periodic cross kink solutions. The electromechanical pulse’s ensuing three-dimensional and contour shapes offer crucial insight into how nerves function and may one day be used in medicine and the biological sciences. Our grasp of soliton dynamics is improved by this research, which also opens up new directions for biomedical investigation and medical developments. A few 3D and contour profiles have also been created for new solutions, and interaction behaviors have also been shown.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3