Titania nanospikes activate macrophage phagocytosis by ligand-independent contact stimulation

Author:

Kartikasari Nadia,Yamada Masahiro,Watanabe Jun,Tiskratok Watcharaphol,He Xindie,Egusa Hiroshi

Abstract

AbstractMacrophage phagocytosis is an important research target to combat various inflammatory or autoimmune diseases; however, the phenomenon has never been controlled by artificial means. Titania nanospikes created by alkaline etching treatment can tune macrophage polarization toward a M1-like type and might regulate macrophage phagocytosis. This in vitro study aimed to determine whether the two-dimensional titania nanosurfaces created by alkaline etching treatment activated the macrophage phagocytosis by nanospike-mediated contact stimulation. On two-dimensional pure titanium sheets, alkaline etching treatments with different protocols created superhydrophilic nanosurfaces with hydroxyl function groups and moderate or dense nanospikes. Both types of titania nanosurfaces promoted the phagocytic activity of the mouse macrophage-like cell line, J774A.1, through upregulation of M1 polarization markers and phagocytosis-related receptors, such as toll-like receptors (TLR2 and 4). In contrast, the hydrophobic smooth or micro-roughened titanium surfaces did not activate macrophage phagocytosis or the expression of related receptors. These phenomena remained unchanged even under the antibody blockade of macrophage TLR2 but were either suppressed or augmented for each surface excited by ultraviolet irradiation. Titania nanospikes induced paxillin expression and provided physical stimuli to macrophages, the extent of which was positively correlated with TLR expression levels. Ligand stimulation with lipopolysaccharide did not upregulate macrophage TLR expression but further enhanced M1 marker expression by titania nanosurfaces. These results showed that the two-dimensional titania nanosurfaces activated macrophage phagocytosis by enhancing expression of phagocytosis-related receptors through nanospike-mediated contact stimulation, in assistance with physical surface properties, in a ligand-independent manner.

Funder

Grant-in-Aids for Scientific Research

Grant-in-Aid for Challenging Exploratory Research

Foundation Nakao for Worldwide Oral Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3