Associations between lipids in selected brain regions, plasma miRNA, and behavioral and cognitive measures following 28Si ion irradiation

Author:

Minnier Jessica,Emmett Mark R.,Perez Ruby,Ding Liang-Hao,Barnette Brooke L.,Larios Rianna E.,Hong Changjin,Hwang Tae Hyun,Yu Yongjia,Fallgren Christina M.,Story Michael D.,Weil Michael M.,Raber Jacob

Abstract

AbstractThe space radiation environment consists of multiple species of charged particles, including 28Si ions, that may impact brain function during and following missions. To develop biomarkers of the space radiation response, BALB/c and C3H female and male mice and their F2 hybrid progeny were irradiated with 28Si ions (350 MeV/n, 0.2 Gy) and tested for behavioral and cognitive performance 1, 6, and 12 months following irradiation. The plasma of the mice was collected for analysis of miRNA levels. Select pertinent brain regions were dissected for lipidomic analyses and analyses of levels of select biomarkers shown to be sensitive to effects of space radiation in previous studies. There were associations between lipids in select brain regions, plasma miRNA, and cognitive measures and behavioral following 28Si ion irradiation. Different but overlapping sets of miRNAs in plasma were found to be associated with cognitive measures and behavioral in sham and irradiated mice at the three time points. The radiation condition revealed pathways involved in neurodegenerative conditions and cancers. Levels of the dendritic marker MAP2 in the cortex were higher in irradiated than sham-irradiated mice at middle age, which might be part of a compensatory response. Relationships were also revealed with CD68 in miRNAs in an anatomical distinct fashion, suggesting that distinct miRNAs modulate neuroinflammation in different brain regions. The associations between lipids in selected brain regions, plasma miRNA, and behavioral and cognitive measures following 28Si ion irradiation could be used for the development of biomarker of the space radiation response.

Funder

NASA

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3