Phagocytosis of microparticles increases responsiveness of macrophage-like cell lines U937 and THP-1 to bacterial lipopolysaccharide and lipopeptide

Author:

Ueno Takayuki,Yamamoto Yumi,Kawasaki Kiyoshi

Abstract

AbstractFollowing bacterial infection, macrophages produce pro-inflammatory cytokines in response to bacterial cell components, including lipopolysaccharide (LPS) and lipopeptide, and simultaneously phagocytize and digest the invading bacteria. To study the effects of phagocytosis on pro-inflammatory responses, we determined if phagocytosis of polystyrene latex beads with ~ 1 µm diameter increases pro-inflammatory cytokine expression by human macrophage-like U937 and THP-1 cells stimulated with LPS. Treating macrophage-like cells with beads coated with IgG to facilitate Fcγ receptor-mediated phagocytosis increased LPS-induced expression of pro-inflammatory cytokines, including tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. Treatment with beads coated with poly-l-lysine to facilitate Fcγ receptor–independent phagocytosis also increased LPS-induced cytokine expression. Our results indicate that LPS-induced pro-inflammatory responses are enhanced by bead phagocytosis regardless of the uptake mechanism. Additionally, phagocytosis enhanced LPS-induced NF-κB activation, suggesting that Toll-like receptor (TLR) 4 signaling is enhanced by phagocytosis. Furthermore, bead phagocytosis enhanced pro-inflammatory responses in U937 cells stimulated with lipopeptide, a ligand for the TLR2/TLR6 heterodimeric receptor. In conclusion, microparticle phagocytosis by macrophage-like U937 and THP-1 cells enhances the innate immune response induced by bacterial components.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3