Author:
Hu Ning,Jiang Xiaodong,Yuan Qianhua,Liu Wuge,Yao Kemin,Long Yan,Pei Xinwu
Abstract
AbstractPollen dispersal is one of the main ways of gene flow. In the past years, rice pollen dispersal and gene flow have been well studies. However, there is much dispute whether the risk of pollen dispersal and gene flow continuously increases with the source area. A Lagrangian stochastic model was used to simulate the pollen depositions at different distances from different pollen source areas. The field experiments showed a good fit in the pollen depositions. The larger the source area, the more the pollen grains were deposited at each distance, with the pollen dispersal distance increasing accordingly. However, this effect gradually leveled off as the source area increased. In the large-area of pollen source, we found a significantly higher saturation point for the amount of pollen deposition. Once the source area exceeded 1000 × 1000 m2, the pollen deposition no longer increased, even if the source area continued to increase, indicating the “critical source area” of rice pollen dispersal. However, a 100 × 100 m2 critical source area for conventional rice and hybrid rice was sufficient, while the critical source area for the sterile line was about 230 × 230 m2.
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Li, Y., Hallerman, E. M., Liu, Q., Wu, K. & Peng, Y. The development and status of Bt rice in China. Plant Biotechnology Journal 14, 839–848 (2016).
2. Andersson, M.S. & de Vicente, M.C. Gene flow between crops and their wild relatives. Baltimore, Johns Hopkins University Press (2010).
3. Chun, Y. J. et al. Gene flow from herbicide-tolerant GM rice and the heterosis of GM rice-weed F2 progeny. Planta 233(4), 807–815 (2011).
4. Rong, J., Xia, H., Zhu, Y. Y., Wang, Y. Y. & Lu, B. R. Asymmetric gene flow between traditional and hybrid rice variety (Oryza sativa) indicated by nuclear simple sequence repeats and implications for germplasm conservation. New Phytologist 163, 439–445 (2004).
5. Rong, J. et al. Low frequency of transgene flow from Bt/CpTI rice to its non-transgenic counterparts planted at close spacing. New Phytologist 168, 559–566 (2005).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献