Creep failure of hierarchical materials

Author:

Pournajar Mahshid,Moretti Paolo,Hosseini Seyyed Ahmad,Zaiser Michael

Abstract

AbstractCreep failure of hierarchical materials is investigated by simulation of beam network models. Such models are idealizations of hierarchical fibrous materials where bundles of load-carrying fibers are held together by multi-level (hierarchical) cross-links. Failure of individual beams is assumed to be governed by stress-assisted thermal activation over local barriers, and beam stresses are computed by solving the global balance equations of linear and angular momentum across the network. Disorder is mimicked by a statistical distribution of barrier heights. Both initially intact samples and samples containing side notches of various length are considered. Samples with hierarchical cross-link patterns are simulated alongside reference samples where cross-links are placed randomly without hierarchical organization. The results demonstrate that hierarchical patterning may strongly increase creep strain and creep lifetime while reducing the lifetime variation. This is due to the fact that hierarchical patterning induces a failure mode that differs significantly from the standard scenario of failure by nucleation and growth of a critical crack. Characterization of this failure mode demonstrates good agreement between the present simulations and experimental findings on hierarchically patterned paper sheets.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3