Applied machine learning for predicting the lanthanide-ligand binding affinities

Author:

Chaube Suryanaman,Goverapet Srinivasan Sriram,Rai Beena

Abstract

AbstractBinding affinities of metal–ligand complexes are central to a multitude of applications like drug design, chelation therapy, designing reagents for solvent extraction etc. While state-of-the-art molecular modelling approaches are usually employed to gather structural and chemical insights about the metal complexation with ligands, their computational cost and the limited ability to predict metal–ligand stability constants with reasonable accuracy, renders them impractical to screen large chemical spaces. In this context, leveraging vast amounts of experimental data to learn the metal-binding affinities of ligands becomes a promising alternative. Here, we develop a machine learning framework for predicting binding affinities (logK1) of lanthanide cations with several structurally diverse molecular ligands. Six supervised machine learning algorithms—Random Forest (RF), k-Nearest Neighbours (KNN), Support Vector Machines (SVM), Kernel Ridge Regression (KRR), Multi Layered Perceptrons (MLP) and Adaptive Boosting (AdaBoost)—were trained on a dataset comprising thousands of experimental values of logK1 and validated in an external 10-folds cross-validation procedure. This was followed by a thorough feature engineering and feature importance analysis to identify the molecular, metallic and solvent features most relevant to binding affinity prediction, along with an evaluation of performance metrics against the dimensionality of feature space. Having demonstrated the excellent predictive ability of our framework, we utilized the best performing AdaBoost model to predict the logK1 values of lanthanide cations with nearly 71 million compounds present in the PubChem database. Our methodology opens up an opportunity for significantly accelerating screening and design of ligands for various targeted applications, from vast chemical spaces.

Funder

Tata Consultancy Services

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference60 articles.

1. Atwood, D. A. The Rare Earth Elements: Fundamentals and Applications (Wiley, Hoboken, 2013).

2. Alonso, E. et al. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environ. Sci. Technol. 46, 3406–3414 (2012).

3. Krishnamurthy, N. & Gupta, C. K. Extractive Metallurgy of Rare Earths (CRC Press, Amsterdam, 2015).

4. Kasper, A. C., Gabriel, A. P., de Oliveira, E. L. B., de Freitas Juchneski, N. C. & Veit, H. M. Electronic waste recycling in electronic waste 87–127 (Springer, Cham, 2015).

5. Treybal, R. E. Mass Transfer Operations (Springer, New York, 1980).

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3