Attention-assisted hybrid 1D CNN-BiLSTM model for predicting electric field induced by transcranial magnetic stimulation coil

Author:

Sathi Khaleda Akhter,Hosain Md Kamal,Hossain Md. Azad,Kouzani Abbas Z.

Abstract

AbstractDeep learning-based models such as deep neural network (DNN) and convolutional neural network (CNN) have recently been established as state-of-the-art for enumerating electric fields from transcranial magnetic stimulation coil. One of the main challenges related to this electric field enumeration is the prediction time and accuracy. Despite the low computational cost, the performance of the existing prediction models for electric field enumeration is quite inefficient. This study proposes a 1D CNN-based bi-directional long short-term memory (BiLSTM) model with an attention mechanism to predict electric field induced by a transcranial magnetic stimulation coil. The model employs three consecutive 1D CNN layers followed by the BiLSTM layer for extracting deep features. After that, the weights of the deep features are redistributed and integrated by the attention mechanism and a fully connected layer is utilized for the prediction. For the prediction purpose, six input features including coil turns of single wing, coil thickness, coil diameter, distance between two wings, distance between head and coil position, and angle between two wings of coil are mapped with the output of the electric field. The performance evaluation is conducted based on four verification metrics (e.g. R2, MSE, MAE, and RMSE) between the simulated data and predicted data. The results indicate that the proposed model outperforms existing DNN and CNN models in predicting the induced electrical field with R2 = 0.9992, MSE = 0.0005, MAE = 0.0188, and RMSE = 0.0228 in the testing stage.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3