Comparison study of the energy and instability of ion-acoustic solitary waves in magnetized electron–positron–ion quantum plasma

Author:

El-Taibany W. F.,Karmakar P. K.,Beshara A. A.,El-Borie M. A.,Gwaily S. A.,Atteya A.

Abstract

AbstractNotably, solitary waves that emerge from the nonlinear properties of plasmas are the main focus of many current studies of localized disturbances in both laboratory and astrophysical plasmas. By applying the reductive perturbation method, we derive the nonlinear homogeneous quantum Zakharov–Kuznetsov (QZK) equation in three-component collisionless quantum plasma consisting of electrons, positrons, and ions in the presence of an external static magnetic field. The solitary wave structures are dependent on the Bohm potential, magnetic field, obliqueness, species Fermi temperatures, and densities. The soliton’s electric field and energy are also derived and investigated, which were found to be reduced as the magnetic field increases. The instability growth rate is also derived by using the small-k perturbation expansion method. The previous parameters affect the instability growth rate as well. A comparison of the energy and instability growth rate behaviour against system parameters is carried out. Large energy and large instability growth rate occur at large values of positron density or lower values of ion density. At zero or small rotation angle, both decrease as the magnetic field increases. Our findings could help us understand the dynamics of magnetic white dwarfs, pulsar magnetospheres, semiconductor plasma, and high-intensity laser-solid matter interaction experiments where e-p-i plasma exists.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3