Simulating anti-skyrmions on a lattice

Author:

Criado Juan C.,Schenk Sebastian,Spannowsky Michael,Hatton Peter D.,Turnbull L. A.

Abstract

AbstractMagnetic skyrmions are meta-stable spin structures that naturally emerge in magnetic materials. While a vast amount of effort has gone into the study of their properties, their counterpart of opposite topological charge, the anti-skyrmion, has not received as much attention. We aim to close this gap by deploying Monte Carlo simulations of spin-lattice systems in order to investigate which interactions support anti-skyrmions, as well as skyrmions of Bloch and Néel type. We find that the combination of ferromagnetic exchange and Dzyaloshinskii–Moriya (DM) interactions is able to stabilize each of the three types, depending on the specific structure of the DM interactions. Considering a three-dimensional spin lattice model, we provide a finite-temperature phase diagram featuring a stable anti-skyrmion lattice phase for a large range of temperatures. In addition, we also shed light on the creation and annihilation processes of these anti-skyrmion tubes and study the effects of the DM interaction strength on their typical size.

Funder

Science and Technology Facilities Council

Deutsche Forschungsgemeinschaft

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3