Modeling maize growth and nitrogen dynamics using CERES-Maize (DSSAT) under diverse nitrogen management options in a conservation agriculture-based maize-wheat system

Author:

Kumar Kamlesh,Parihar C. M.,Nayak H. S.,Sena D. R.,Godara Samarth,Dhakar Rajkumar,Patra Kiranmoy,Sarkar Ayan,Bharadwaj Sneha,Ghasal Prakash Chand,L.Meena A.,Reddy K. Srikanth,Das T. K.,Jat S. L.,Sharma D. K.,Saharawat Y. S.,Singh Upendra,Jat M. L.,Gathala M. K.

Abstract

AbstractAgricultural field experiments are costly and time-consuming, and often struggling to capture spatial and temporal variability. Mechanistic crop growth models offer a solution to understand intricate crop-soil-weather system, aiding farm-level management decisions throughout the growing season. The objective of this study was to calibrate and the Crop Environment Resource Synthesis CERES-Maize (DSSAT v 4.8) model to simulate crop growth, yield, and nitrogen dynamics in a long-term conservation agriculture (CA) based maize system. The model was also used to investigate the relationship between, temperature, nitrate and ammoniacal concentration in soil, and nitrogen uptake by the crop. Additionally, the study explored the impact of contrasting tillage practices and fertilizer nitrogen management options on maize yields. Using field data from 2019 and 2020, the DSSAT-CERES-Maize model was calibrated for plant growth stages, leaf area index-LAI, biomass, and yield. Data from 2021 were used to evaluate the model's performance. The treatments consisted of four nitrogen management options, viz., N0 (without nitrogen), N150 (150 kg N/ha through urea), GS (Green seeker-based urea application) and USG (urea super granules @150kg N/ha) in two contrasting tillage systems, i.e., CA-based zero tillage-ZT and conventional tillage-CT. The model accurately simulated maize cultivar’s anthesis and physiological maturity, with observed value falling within 5% of the model’s predictions range. LAI predictions by the model aligned well with measured values (RMSE 0.57 and nRMSE 10.33%), with a 14.6% prediction error at 60 days. The simulated grain yields generally matched with measured values (with prediction error ranging from 0 to 3%), except for plots without nitrogen application, where the model overestimated yields by 9–16%. The study also demonstrated the model's ability to accurately capture soil nitrate–N levels (RMSE 12.63 kg/ha and nRMSE 12.84%). The study concludes that the DSSAT-CERES-Maize model accurately assessed the impacts of tillage and nitrogen management practices on maize crop’s growth, yield, and soil nitrogen dynamics. By providing reliable simulations during the growing season, this modelling approach can facilitate better planning and more efficient resource management. Future research should focus on expanding the model's capabilities and improving its predictions further.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3